Minority Carrier Lifetime
   HOME

TheInfoList



OR:

A definition in
semiconductor physics A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
, carrier lifetime is defined as the average time it takes for a
minority carrier In physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. The term is used ...
to recombine. The process through which this is done is typically known as minority carrier recombination. The energy released due to recombination can be either thermal, thereby heating up the semiconductor (''thermal recombination'' or
non-radiative recombination In the solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are ...
, one of the sources of
waste heat Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility ...
in
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
s), or released as
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s (''optical recombination'', used in
LEDs A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (cor ...
and
semiconductor laser The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with e ...
s). The carrier lifetime can vary significantly depending on the materials and construction of the semiconductor. Carrier lifetime plays an important role in
bipolar transistors A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor, uses only one kind of charge carrier. A bipolar t ...
and
solar cells A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physics, physical and Chemical substance, chemical phenomenon.indirect band gap In semiconductor physics, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characteriz ...
semiconductors, the carrier lifetime strongly depends on the concentration of recombination centers. Gold atoms act as highly efficient recombination centers, silicon for some high switching speed diodes and transistors is therefore alloyed with a small amount of gold. Many other atoms, e.g. iron or nickel, have similar effect.


Overview

In practical applications, the
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or '' ...
of a semiconductor is typically found in a non-equilibrium state. Therefore, processes that tend towards thermal equilibrium, namely mechanisms of carrier recombination, always play a role. Additionally, semiconductors used in devices are very rarely pure semiconductors. Oftentimes, a
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
is used, giving an excess of electrons (in so-called ''n-type doping'') or
holes A hole is an opening in or through a particular medium, usually a solid body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in many fields of en ...
(in so-called ''p-type doping'') within the band structure. This introduces a majority carrier and a minority carrier. As a result of this, the carrier lifetime plays a vital role in many semiconductor devices that have dopants.


Recombination mechanisms

There are several mechanisms by which minority carriers can recombine, each of which subtract from the carrier lifetime. The main mechanisms that play a role in modern devices are band-to-band recombination and stimulated emission, which are forms of radiative recombination, and Shockley-Read-Hall (SRH), Auger, Langevin, and surface recombination, which are forms of non-radiative recombination. Depending on the system, certain mechanisms may play a greater role than others. For example, surface recombination plays a significant role in solar cells, where much of the effort goes into passivating surfaces to minimize non-radiative recombination. As opposed to this, Langevin recombination plays a major role in
organic solar cell An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport t ...
s, where the semiconductors are characterized by low mobility. In these systems, maximizing the carrier lifetime is synonymous to maximizing the efficiency of the device.


Applications


Solar cells

A solar cell is an electrical device in which a semiconductor is exposed to light that is converted into electricity through the
photovoltaic effect The photovoltaic effect is the generation of voltage and electric current in a material upon exposure to light. It is a physical property, physical and chemical phenomenon. The photovoltaic effect is closely related to the photoelectric effect. F ...
. Electrons are either excited through the absorption of light, or if the band-gap energy of the material can be bridged, electron-hole pairs are created. Simultaneously, a voltage potential is created. The charge carriers within the solar cell move through the semiconductor in order to cancel said potential, which is the drifting force that moves the electrons. Also, the electrons can be forced to move by diffusion from higher concentration to lower concentration of electrons. In order to maximize the efficiency of the solar cell, it is desirable to have as many charge carriers as possible collected at the electrodes of the solar cell. Thus, recombination of electrons (among other factors that influence efficiency) must be avoided. This corresponds to an increase in the carrier lifetime. Surface recombination occurs at the top of the solar cell, which makes it preferable to have layers of material that have great surface passivation properties so as not to become affected by exposure to light over longer periods of time. Additionally, the same method of layering different semiconductor materials is used to reduce the capture probability of the electrons, which results in a decrease in trap-assisted SRH recombination, and an increase in carrier lifetime. Radiative (band-to-band) recombination is negligible in solar cells that have semiconductor materials with indirect bandgap structure. Auger recombination occurs as a limiting factor for solar cells when the concentration of excess electrons grows large at low doping rates. Otherwise, the doping-dependent SRH recombination is one of the primary mechanisms that reduces the electrons’ carrier lifetime in solar cells.


Bipolar junction transistors

A bipolar junction transistor is a type of transistor that is able to use electrons and electron holes as charge carriers. A BJT uses a single crystal of material in its circuit that is divided into two types of semiconductor, an n-type and p-type. These two types of doped semiconductors are spread over three different regions in respective order: the emitter region, the base region and the collector region. The emitter region and collector region are quantitively doped differently, but are of the same type of doping and share a base region, which is why the system is different from two diodes connected in series with each other. For a PNP-transistor, these regions are, respectively, p-type, n-type and p-type, and for a NPN-transistor, these regions are, respectively, n-type, p-type and n-type. For NPN-transistors in typical forward-active operation, given an injection of charge carriers through the first junction from the emitter into the base region, electrons are the charge carriers that are transported diffusively through the base region towards the collector region. These are the
minority carrier In physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. The term is used ...
s of the base region. Analogously, for PNP-transistors, electronic holes are the minority carriers of the base region. The carrier lifetime of these minority carriers plays a crucial role in the charge flow of minority carriers in the base region, which is found between the two junctions. Depending on the BJT's mode of operation, recombination is either preferred, or to be avoided in the base region. In particular, for the aforementioned forward-active mode of operation, recombination is not preferable. Thus, in order to get as many minority carriers as possible from the base region into the collecting region before these recombine, the width of the base region must be small enough such that the minority carriers can diffuse in a smaller amount of time than the semiconductor's minority carrier lifetime. Equivalently, the width of the base region must be smaller than the diffusion length, which is the average length a charge carrier travels before recombining. Additionally, in order to prevent high rates of recombination, the base is only lightly doped with respect to the emitter and collector region. As a result of this, the charge carriers do not have a high probability of staying in the base region, which is their preferable region of occupation when recombining into a lower-energy state. For other modes of operation, like that of fast switching, a high recombination rate (and thus a short carrier lifetime) is desirable. The desired mode of operation, and the associated properties of the doped base region must be considered in order to facilitate the appropriate carrier lifetime. Presently, silicon and silicon carbide are the materials used in most BJTs. The recombination mechanisms that must be considered in the base region are surface recombination near the base-emitter junction, as well as SRH- and Auger recombination in the base region. Specifically, Auger recombination increases when the amount of injected charge carriers grows, hence decreasing the efficiency of the current gain with growing injection numbers.


Semiconductor lasers

In semiconductor lasers, the carrier lifetime is the time it takes an electron before recombining via non-radiative processes in the laser cavity. In the frame of the rate equations model, carrier lifetime is used in the charge conservation equation as the time constant of the exponential decay of carriers. The dependence of carrier lifetime on the carrier density is expressed as: :\frac= A + BN + CN^2 where A, B and C are the non-radiative, radiative and Auger recombination coefficients and \tau_n(N) is the carrier lifetime.


Measurement

Because the efficiency of a semiconductor device generally depends on its carrier lifetime, it is important to be able to measure this quantity. The method by which this is done depends on the device, but is usually dependent on measuring the
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
and
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
. In solar cells, the carrier lifetime can be calculated by illuminating the surface of the cell, which induces carrier generation and increases the voltage until it reaches an equilibrium, and subsequently turning off the light source. This causes the voltage to decay at a consistent rate. The rate at which the voltage decays is determined by the amount of minority carriers that recombine per unit time, with a higher amount of recombining carriers resulting in a faster decay. Subsequently, a lower carrier lifetime will result in a faster decay of the voltage. This means that the carrier lifetime of a solar cell can be calculated by studying its voltage decay rate. This carrier lifetime is generally expressed as: :\tau = -\frac\left(\frac\right)^ where k_B is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, ...
, q is the
elementary charge The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a fundame ...
, T is the temperature, and \frac is the
time derivative A time derivative is a derivative of a function with respect to time, usually interpreted as the rate of change of the value of the function. The variable denoting time is usually written as t. Notation A variety of notations are used to denote th ...
of the
open-circuit voltage Open-circuit voltage (abbreviated as OCV or VOC) is the difference of electrical potential between two terminals of an electronic device when disconnected from any circuit. There is no external load connected. No external electric current f ...
. In
bipolar junction transistor A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor, uses only one kind of charge carrier. A bipolar ...
s (BJTs), determining the carrier lifetime is rather more complicated. Namely, one must measure the output conductance and reverse
transconductance Transconductance (for transfer conductance), also infrequently called mutual conductance, is the electrical characteristic relating the current through the output of a device to the voltage across the input of a device. Conductance is the reciproc ...
, both of which are variables that depend on the voltage and flow of current through the BJT, and calculate the minority carrier transit time, which is determined by the width of the quasi-neutral base (QNB) of the BJT, and the diffusion coefficient; a constant that quantifies the atomic migration within the BJT. This carrier lifetime is expressed as: :\tau_ = -\frac\cdot\frac where G_o, G_r, W_B and D_n are the output conductance, reverse transconductance, width of the QNB and diffusion coefficient, respectively.


Current research

Because a longer carrier lifetime is often synonymous to a more efficient device, research tends to focus on minimizing processes that contribute to the recombination of minority carriers. In practice, this generally implies reducing structural defects within the semiconductors, or introducing novel methods that do not suffer from the same recombination mechanisms. In
crystalline silicon Crystalline silicon or (c-Si) Is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semicondu ...
solar cells, which are particularly common, an important limiting factor is the structural damage done to the cell when the
transparent conducting film Transparent conducting films (TCFs) are thin films of optically transparent and electrically conductive material. They are an important component in a number of electronic devices including liquid-crystal displays, OLEDs, touchscreens and phot ...
is applied. This is done with ''reactive plasma deposition'', a form of sputter deposition. In the process of applying this film, defects appear on the silicon layer, which degrades the carrier lifetime. Reducing the amount of damage done during this process is therefore important to increase the efficiency of the solar cell, and a focus of current research. In addition to research that seeks to optimize currently favoured technologies, there is a great deal of research surrounding other, less-utilized technologies, like the
Perovskite solar cell A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such a ...
(PSC). This solar cell is preferable due to its comparatively cheap and simple manufacturing process. Modern advancements suggest that there is still ample room to improve on the carrier lifetime of this solar cell, with most of the issues surrounding it being construction-related. In addition to solar cells,
perovskite Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure as (XIIA2+VIB4+X2−3), known as ...
s can be utilized to manufacture LEDs, lasers, and transistors. As a result of this,
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
and
halide In chemistry, a halide (rarely halogenide) is a binary chemical compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative (or more electropositive) than the halogen, to make a fluor ...
perovskites are of particular interest in modern research. Current problems include the structural defects that appear when semiconductor devices are manufactured with the material, as the dislocation density associated with the
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s is a detriment to their carrier lifetime.


References


External links

{{Portal, Electronics
Carrier Lifetime
Charge carriers